skip to main content


Search for: All records

Creators/Authors contains: "O’Shea, Brian W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present a study of the co-evolution of a population of primordial star-forming minihaloes at Cosmic Dawn. In this study, we highlight the influence of individual Population III stars on the ability of nearby minihaloes to form sufficient molecular hydrogen to undergo star formation. In the absence of radiation, we find the minimum halo mass required to bring about collapse to be ∼105 M⊙, this increases to ∼106 M⊙ after two stars have formed. We find an inverse relationship between halo mass and the time required for it to recover its molecular gas after being disrupted by radiation from a nearby star. We also take advantage of the extremely high resolution to investigate the effects of major and minor mergers on the gas content of star-forming minihaloes. Contrary to previous claims of fallback of supernova ejecta, we find minihaloes evacuated after hosting Pop III stars primarily recover gas through mergers with undisturbed haloes. We identify an intriguing type of major merger between recently evacuated haloes and gas-rich ones, finding that these ‘mixed’ mergers accelerate star formation instead of suppressing it like their low-redshift counterparts. We attribute this to the gas-poor nature of one of the merging haloes resulting in no significant rise in temperature or turbulence and instead inducing a rapid increase in central density and hydrostatic pressure. This constitutes a novel formation pathway for Pop III stars and establishes major mergers as potentially the primary source of gas, thus redefining the role of major mergers at this epoch.

     
    more » « less
  2. Abstract

    Precipitation is potentially a mechanism through which the circumgalactic medium (CGM) can regulate a galaxy’s star formation. Here, we present idealized simulations of isolated Milky Way–like galaxies intended to examine the ability of galaxies to self-regulate their star formation, in particular via precipitation. We also examine the impact of rotation in the CGM. Using six simulations, we explore variations in the initial CGMtcool/tffratio and rotation profile. Those variations affect the amount of gas accretion and star formation within the galactic disk. To encourage this accretion and better study its dependence on CGM structure, we gradually increase the efficiency of stellar feedback during the first half of our simulations. Yet despite this gradual increase, the resulting outflows quickly evacuate large, hot cavities within the CGM and even beyondr200. Some of the CGM gas avoids interacting with the cavities and is able to feed the disk along its midplane, but the cooling of feedback-heated gas far from the midplane is too slow to supply the disk with additional gas. Our simulations illustrate the importance of physical mechanisms in the outer CGM and IGM for star formation regulation in Milky Way–scale halos.

     
    more » « less
  3. Abstract

    Magnetized turbulence is ubiquitous in many astrophysical and terrestrial plasmas but no universal theory exists. Even the detailed energy dynamics in magnetohydrodynamic (MHD) turbulence are still not well understood. We present a suite of subsonic, super-Alfvénic, high plasma beta MHD turbulence simulations that only vary in their dynamical range, i.e., in their separation between the large-scale forcing and dissipation scales, and their dissipation mechanism (implicit large eddy simulation, ILES, and direct numerical simulation (DNS)). Using an energy transfer analysis framework we calculate the effective numerical viscosities and resistivities, and demonstrate that all ILES calculations of MHD turbulence are resolved and correspond to an equivalent visco-resistive MHD turbulence calculation. Increasing the number of grid points used in an ILES corresponds to lowering the dissipation coefficients, i.e., larger (kinetic and magnetic) Reynolds numbers for a constant forcing scale. Independently, we use this same framework to demonstrate that—contrary to hydrodynamic turbulence—the cross-scale energy fluxes are not constant in MHD turbulence. This applies both to different mediators (such as cascade processes or magnetic tension) for a given dynamical range as well as to a dependence on the dynamical range itself, which determines the physical properties of the flow. We do not observe any indication of convergence even at the highest resolution (largest Reynolds numbers) simulation at 20483cells, calling into question whether an asymptotic regime in MHD turbulence exists, and, if so, what it looks like.

     
    more » « less
  4. Abstract

    The circumgalactic medium (CGM) is often assumed to exist in or near hydrostatic equilibrium, with the regulation of accretion and the effects of feedback treated as perturbations to a stable balance between gravity and thermal pressure. We investigate global hydrostatic equilibrium in the CGM using four highly resolvedL*galaxies from the Figuring Out Gas & Galaxies in Enzo (FOGGIE) project. The FOGGIE simulations were specifically targeted at fine spatial and mass resolution in the CGM (Δx≲ 1 kpch−1andM≃ 200M). We develop a new analysis framework that calculates the forces provided by thermal pressure gradients, turbulent pressure gradients, ram pressure gradients of large-scale radial bulk flows, centrifugal rotation, and gravity acting on the gas in the CGM. Thermal and turbulent pressure gradients vary strongly on scales of ≲5 kpc throughout the CGM. Thermal pressure gradients provide the main supporting force only beyond ∼0.25R200, or ∼50 kpc atz= 0. Within ∼0.25R200, turbulent pressure gradients and rotational support provide stronger forces than thermal pressure. More generally, we find that global equilibrium models are neither appropriate nor predictive for the small scales probed by absorption line observations of the CGM. Local conditions generally cannot be derived by assuming a global equilibrium, but an emergent global equilibrium balancing radially inward and outward forces is obtained when averaging over the nonequilibrium local conditions on large scales in space and time. Approximate hydrostatic equilibrium holds only at large distances from galaxies, even when averaging out small-scale variations.

     
    more » « less
  5. Abstract

    The Milky Way has accreted many ultra-faint dwarf galaxies (UFDs), and stars from these galaxies can be found throughout our Galaxy today. Studying these stars provides insight into galaxy formation and early chemical enrichment, but identifying them is difficult. Clustering stellar dynamics in 4D phase space (E,Lz,Jr,Jz) is one method of identifying accreted structure that is currently being utilized in the search for accreted UFDs. We produce 32 simulated stellar halos using particle tagging with the Caterpillar simulation suite and thoroughly test the abilities of different clustering algorithms to recover tidally disrupted UFD remnants. We perform over 10,000 clustering runs, testing seven clustering algorithms, roughly twenty hyperparameter choices per algorithm, and six different types of data sets each with up to 32 simulated samples. Of the seven algorithms, HDBSCAN most consistently balances UFD recovery rates and cluster realness rates. We find that, even in highly idealized cases, the vast majority of clusters found by clustering algorithms do not correspond to real accreted UFD remnants and we can generally only recover 6% of UFDs remnants at best. These results focus exclusively on groups of stars from UFDs, which have weak dynamic signatures compared to the background of other stars. The recoverable UFD remnants are those that accreted recently,zaccretion≲ 0.5. Based on these results, we make recommendations to help guide the search for dynamically linked clusters of UFD stars in observational data. We find that real clusters generally have higher median energy andJr, providing a way to help identify real versus fake clusters. We also recommend incorporating chemical tagging as a way to improve clustering results.

     
    more » « less
  6. Abstract

    This study analyzes 18 simulated galaxies run using three prescriptions for stellar feedback, including thermal, kinetic, and interstellar medium pre-processing feedback mechanisms. Each simulation set models one of these mechanisms with 6 distinct galaxies, with varyingMviratz = 0. The morphological and thermodynamic quantities and distributions, as well as star formation histories, are compared to understand the impact of each stellar feedback mechanism. We find that the prescription for stellar feedback makes a significant impact on the behavior of galaxies, and observe systematic trends within each simulation and across mass ranges. Specifically, kinetic feedback results in no formation of a disk structure and delayed star formation, and pre-processing of the interstellar medium results in delayed star formation as compared to the thermal feedback mechanisms.

     
    more » « less
  7. Abstract

    We present the KODIAQ-Z survey aimed to characterize the cool, photoionized gas at 2.2 ≲z≲ 3.6 in 202 Hi-selected absorbers with 14.6 ≤logNHI< 20 that probe the interface between galaxies and the intergalactic medium (IGM). We find that gas with14.6logNHI<20at 2.2 ≲z≲ 3.6 can be metal-rich (−1.6 ≲ [X/H] ≲ − 0.2) as seen in damped Lyαabsorbers (DLAs); it can also be very metal-poor ([X/H] < − 2.4) or even pristine ([X/H] < − 3.8), which is not observed in DLAs but is common in the IGM. For16<logNHI<20absorbers, the frequency of pristine absorbers is about 1%–10%, while for14.6logNHI16absorbers it is 10%–20%, similar to the diffuse IGM. Supersolar gas is extremely rare (<1%) at these redshifts. The factor of several thousand spread from the lowest to highest metallicities and large metallicity variations (a factor of a few to >100) between absorbers separated by less than Δv< 500 km s−1imply that the metals are poorly mixed in14.6logNHI<20gas. We show that these photoionized absorbers contribute to about 14% of the cosmic baryons and 45% of the cosmic metals at 2.2 ≲z≲ 3.6. We find that the mean metallicity increases withNHi, consistent with what is found inz< 1 gas. The metallicity of gas in this column density regime has increased by a factor ∼8 from 2.2 ≲z≲ 3.6 toz< 1, but the contribution of the14.6logNHI<19absorbers to the total metal budget of the universe atz< 1 is a quarter of that at 2.2 ≲z≲ 3.6. We show that FOGGIE cosmological zoom-in simulations have a similar evolution of [X/H] withNHi, which is not observed in lower-resolution simulations. In these simulations, very metal-poor absorbers with [X/H] < − 2.4 atz∼ 2–3 are tracers of inflows, while higher-metallicity absorbers are a mixture of inflows and outflows.

     
    more » « less
  8. Abstract The classical definition of the virial temperature of a galaxy halo excludes a fundamental contribution to the energy partition of the halo: the kinetic energy of nonthermal gas motions. Using simulations of low-redshift, ∼ L * galaxies from the Figuring Out Gas & Galaxies In Enzo (FOGGIE) project that are optimized to resolve low-density gas, we show that the kinetic energy of nonthermal motions is roughly equal to the energy of thermal motions. The simulated FOGGIE halos have ∼2× lower bulk temperatures than expected from a classical virial equilibrium, owing to significant nonthermal kinetic energy that is formally excluded from the definition of T vir . We explicitly derive a modified virial temperature including nonthermal gas motions that provides a more accurate description of gas temperatures for simulated halos in virial equilibrium. Strong bursts of stellar feedback drive the simulated FOGGIE halos out of virial equilibrium, but the halo gas cannot be accurately described by the standard virial temperature even when in virial equilibrium. Compared to the standard virial temperature, the cooler modified virial temperature implies other effects on halo gas: (i) the thermal gas pressure is lower, (ii) radiative cooling is more efficient, (iii) O vi absorbing gas that traces the virial temperature may be prevalent in halos of a higher mass than expected, (iv) gas mass estimates from X-ray surface brightness profiles may be incorrect, and (v) turbulent motions make an important contribution to the energy balance of a galaxy halo. 
    more » « less